China high quality High-Precision Helical Bevel Gears Used in Various Industries bevel gear set

Product Description

Product Description

Product introduction

Tooth form system GLEASON
number of teeth 5
modulus 19/41
Profile angle 20°
Midpoint helix angle 35°
accuracy class 5
gear backlash 0.35-0.45
material quality 18CrNiMo7-6
heat treatment method carburizing and quenching
surface hardness HRC59-62
Core hardness HRC35-46

My advantages:
1. High quality materials, professional production, high-precision equipment. Customized design and processing;
2. Strong and durable, strong strength, large torque and good comprehensive mechanical properties;
3. High rotation efficiency, stable and smooth transmission, long service life, noise reduction and shock absorption;
4. Focus on gear processing for 20 years.
5. Carburizing and quenching of tooth surface, strong wear resistance, reliable operation and high bearing capacity;
6. The tooth surface can be ground, and the precision is higher after grinding.




The maximum machining diameter of our company’s cylindrical gears is 1250mm, and the machining modulus ranges from 0.5 to 20. The highest accuracy level of gears can reach international GB11365-89 4. The commonly used materials are 18CrNiMo7-6/20Cr2Ni4A/20CrNi2MoA/20CrMnTi/20CrMnMo/42CrMo, etc. The commonly used heat treatment processes are carburizing, quenching, nitriding, and quenching and tempering. Widely used in various fields such as aerospace, rail transit, mining and metallurgy, engineering vehicles, port machinery and ships, industrial gearboxes, industrial automation, etc.

       HangZhou Ke’an Transmission Machinery Co., Ltd. is a professional manufacturer of high-precision gear transmission parts. The company is located in HangZhou City, HangZhou, a land of fish and rice in the south of the Yangtze River. It is adjacent to the Xiake Exit of the HangZhouang Expressway for 6 kilometers, the HangZhou South Exit of the Xihu (West Lake) Dis. (ZheJiang ZheJiang ) Expressway for 6 kilometers, and the HangZhou Station of the South HangZhouang High speed Railway for 6 kilometers. The location is superior and the transportation is very convenient. The company has an annual production capacity of more than 35000 high-precision gear transmission parts.
       The company has 6 American Gleason CHINAMFG 275G/800G CNC spiral bevel gear grinding machines, German Kappa VX55/59 CNC gear grinding center, Swiss Mager KS-42 high-precision straight bevel gear grinding machine, Swiss Stuart high-precision CNC internal and external cylindrical grinding machine, German ZEISS coordinate measuring instrument and a set of American Gleason 1500GMM gear measuring center, which can collect and detect the profile of the tooth. It has a complete set of heat treatment production line of EPSON controlled atmosphere multi-purpose furnace, with more than 200 hosts and supporting equipment. The product has complete detection means, and is equipped with precision detection instruments such as material physical and chemical analysis, mechanical property test, ultrasonic flaw detection, magnetic particle flaw detection, etc. The gear processing modulus ranges from 0.5 to 20, and the highest accuracy level can reach international GB11365-89 level 4. The products are widely used in aerospace, rail transit, mining and metallurgy, engineering vehicles, port machinery and ships, industrial gear boxes, industrial automation and other different fields.
       With professional manufacturing experience and strong design and development ability, the company can conduct mapping or design various non-standard special high-precision gear parts according to the technical parameters provided by users. Tight GB/T19001-2016/ISO9001:2015/AS9100D-2016 quality management system certification, perfect ERP process management and MES information management ensure the controllability of product quality management. The company has passed the CCS classification society factory certification of China Classification Society, and is praised by the industry for its excellent products, reasonable prices, short production cycle, timely service and other advantages.
       The company adheres to the corporate spirit of “diligence and pragmatism, exploration and innovation”, and the business philosophy of “professional casting quality, integrity winning the world”. It shoulders the mission of having strong gears and strong equipment, and strives to make greater contributions to the world’s transmission.






Main Markets? North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order? * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Bevel Wheel
Material: Cast Steel


Customized Request

helical gear

How does a helical gear impact the overall efficiency of a system?

A helical gear has a significant impact on the overall efficiency of a system. Due to their unique design and characteristics, helical gears offer several advantages that contribute to improved efficiency. Here’s a detailed explanation of how a helical gear impacts the overall efficiency of a system:

  1. Power Transmission: Helical gears provide efficient power transmission due to their inclined tooth design. The helical teeth engage gradually, resulting in a smooth transfer of torque between the gears. This gradual engagement reduces impact and shock loads, minimizing energy losses and improving overall efficiency.
  2. Load Distribution: The helical tooth profile allows for increased contact area between the gear teeth compared to other gear types. This larger contact area results in improved load distribution across the gear teeth. By distributing the load more evenly, helical gears can handle higher loads without excessive wear and reduce the risk of tooth failure, leading to increased efficiency and reliability.
  3. Noise and Vibration Reduction: Helical gears operate with less noise and vibration compared to other gear types, such as spur gears. The inclined tooth profile of helical gears helps to minimize gear meshing noise and vibration by distributing the forces along the gear teeth over a larger contact area. Reduced noise and vibration levels contribute to a quieter and smoother operation, indicating lower energy losses and improved overall efficiency.
  4. Higher Gear Ratios: Helical gears can achieve higher gear ratios compared to other gear types. This capability allows for more precise speed control and torque conversion in various applications. By providing the desired gear ratios, helical gears enable the system to operate at optimal speeds and torque levels, maximizing efficiency and performance.
  5. Efficient Lubrication: The helical gear design allows for effective lubrication of the gear teeth. The continuous sliding action between the helical teeth assists in distributing the lubricant evenly along the gear contact surfaces. Proper lubrication reduces friction and wear, minimizing energy losses and enhancing the overall efficiency of the gear system.
  6. Compact Design: Helical gears have a compact design that allows for efficient use of space within a system. The inclined tooth profile enables multiple gear sets to be positioned on parallel or intersecting shafts, facilitating compact gear arrangements. This compactness reduces the overall size and weight of the system while maintaining high efficiency.
  7. High Precision: Helical gears offer excellent positional accuracy and repeatability. The helical tooth profile ensures precise and consistent gear meshing, resulting in accurate motion control and minimal backlash. This precision contributes to efficient operation, especially in applications requiring precise positioning and synchronization of components.
  8. Wear Resistance: Helical gears exhibit good wear resistance due to the larger contact area and gradual tooth engagement. The inclined tooth profile helps distribute the load, reducing localized wear and extending the gear’s service life. Reduced wear translates to sustained gear efficiency over time, minimizing the need for frequent replacements and maintenance.

Overall, the design characteristics of helical gears, including smooth power transmission, load distribution, noise reduction, higher gear ratios, efficient lubrication, compactness, precision, and wear resistance, collectively contribute to improved system efficiency. By choosing helical gears appropriately for a given application, engineers can enhance the overall performance, reliability, and energy efficiency of the system.

helical gear

How do you calculate the efficiency of a helical gear?

The efficiency of a helical gear can be calculated by comparing the power input to the gear with the power output. The efficiency represents the ratio of the output power to the input power, expressed as a percentage. Here’s a detailed explanation of how to calculate the efficiency of a helical gear:

The formula for calculating gear efficiency is:

Efficiency = (Power Output / Power Input) * 100%

To calculate the efficiency, you need to determine the power input and power output values. Here are the steps involved:

  1. Power Input: The power input to the gear is the amount of power supplied to the gear system. It can be determined by multiplying the input torque (Tin) by the input rotational speed (Nin) in radians per second. The formula for power input is:

Power Input = Tin * Nin

  1. Power Output: The power output from the gear is the amount of power delivered by the gear system. It can be calculated by multiplying the output torque (Tout) by the output rotational speed (Nout) in radians per second. The formula for power output is:

Power Output = Tout * Nout

  1. Calculate Efficiency: Once you have determined the power input and power output values, you can calculate the gear efficiency using the formula mentioned earlier:

Efficiency = (Power Output / Power Input) * 100%

The resulting efficiency value will be a percentage, representing the proportion of input power that is effectively transmitted as output power by the helical gear system. A higher efficiency value indicates a more efficient gear system, with less power loss during the gear transmission.

It’s important to note that gear efficiency can be influenced by various factors, including gear design, tooth profile, operating conditions, lubrication, and manufacturing quality. Therefore, the calculated efficiency represents an estimate based on the given input and output power values, and it may vary in real-world applications.

helical gear

What is a helical gear and how does it work?

A helical gear is a type of cylindrical gear with teeth that are cut at an angle to the gear axis. It is widely used in various mechanical systems to transmit power and motion between parallel shafts. Here’s a detailed explanation of helical gears and their working principles:

A helical gear consists of a cylindrical shape with teeth that are cut in a helical pattern around the gear’s circumference. The teeth of a helical gear are not perpendicular to the gear axis but are instead aligned at an angle, forming a helix shape. This helix angle allows for gradual engagement and disengagement of the gear teeth, resulting in smoother and quieter operation compared to spur gears.

The working principle of a helical gear involves the transfer of rotational motion and power between parallel shafts. When two helical gears mesh together, their helical teeth gradually come into contact, causing a sliding action as the gears rotate. This sliding action creates both axial and radial forces on the teeth, resulting in a thrust load along the gear axis.

As the helical gears rotate, the sliding action between the teeth causes a force component along the gear axis. This axial force is responsible for generating the thrust load on the gear, which must be properly supported by suitable thrust bearings or other means to ensure smooth and efficient operation.

The helical gear design offers several advantages:

  1. Smooth and Quiet Operation: The helical teeth engagement allows for a gradual contact between the gear teeth, reducing impact and noise during operation. This results in smoother and quieter gear performance compared to spur gears.
  2. Increased Load-Carrying Capacity: The helical gear design provides greater tooth contact compared to spur gears. This increased contact area allows helical gears to transmit higher loads and handle greater torque without experiencing excessive wear or tooth failure.
  3. Parallel Shaft Operation: Helical gears are primarily used for transmitting power and motion between parallel shafts. By meshing two helical gears on parallel shafts, rotational motion can be efficiently transmitted from one shaft to the other with a constant speed ratio.
  4. Ability to Transmit Motion at Various Angles: While helical gears are commonly used for parallel shaft applications, they can also be used to transmit motion at non-parallel shaft angles by using a combination of helical gears or by incorporating additional components such as bevel gears.

It is important to consider a few factors when using helical gears:

  • Helix Angle: The helix angle determines the degree of tooth engagement and sliding action. A higher helix angle increases the smoothness of operation but also introduces a larger axial force and thrust load on the gear.
  • Direction of Helix: Helical gears can have either a right-hand or left-hand helix. When two helical gears mesh, they must have opposite helix directions to ensure proper engagement.
  • Lubrication: Due to the sliding action between helical gear teeth, proper lubrication is crucial to minimize friction, wear, and heat generation. Adequate lubrication helps ensure the longevity and efficiency of the gear system.

In summary, a helical gear is a cylindrical gear with teeth cut in a helical pattern. It operates by gradually engaging and disengaging the teeth, resulting in smooth and quiet operation. Helical gears are widely used in various mechanical systems for parallel shaft applications, providing high load-carrying capacity and efficient power transmission.

China high quality High-Precision Helical Bevel Gears Used in Various Industries bevel gear setChina high quality High-Precision Helical Bevel Gears Used in Various Industries bevel gear set
editor by CX 2024-04-04